Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 373, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172169

RESUMEN

If there was no gene interaction, the gene aggregation effect would increase infinitely with the increase of gene number. Epistasis avoids the endless accumulation of gene effects, playing a role of homeostasis. To confirm the role, QTL epistases were analyzed by four single-segment substitution lines with heading date QTLs in this paper. We found that QTLs of three positive effects and one negative effect generated 62.5% negative dual QTL epistatic effects and 57.7% positive triple QTL epistatic effects, forming the relationship "positive QTLs-negative one order interactions-positive two order interactions". In this way, the aggregation effect of QTLs was partially neutralized by the opposite epistatic effect sum. There also were two exceptions, QTL OsMADS50 and gene Hd3a-2 were always with consistent effect directions with their epistases, implying they could be employed in pyramiding breeding with different objectives. This study elucidated the mechanism of epistatic interactions among four QTLs and provided valuable genetic resources for improving heading date in rice.


Asunto(s)
Oryza , Mapeo Cromosómico , Oryza/genética , Fenotipo , Epistasis Genética , Cromosomas de las Plantas , Fitomejoramiento , Homeostasis/genética
2.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069395

RESUMEN

Zn2+-dependent histone deacetylases (HDACs) are enzymes that regulate gene expression by removing acetyl groups from histone proteins. These enzymes are essential in all living systems, playing key roles in cancer treatment and as potential pesticide targets. Previous phylogenetic analyses of HDAC in certain species have been published. However, their classification and evolutionary origins across biological kingdoms remain unclear, which limits our understanding of them. In this study, we collected the HDAC sequences from 1451 organisms and performed analyses. The HDACs are found to diverge into three classes and seven subclasses under divergent selection pressure. Most subclasses show species specificity, indicating that HDACs have evolved with high plasticity and diversification to adapt to different environmental conditions in different species. In contrast, HDAC1 and HDAC3, belonging to the oldest class, are conserved and crucial in major kingdoms of life, especially HDAC1. These findings lay the groundwork for the future application of HDACs.


Asunto(s)
Histonas , Zinc , Filogenia , Zinc/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo
3.
PLoS One ; 16(3): e0248155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33662009

RESUMEN

Nitrogen assimilation is strictly regulated in cyanobacteria. In an inorganic nitrogen-deficient environment, some vegetative cells of the cyanobacterium Anabaena differentiate into heterocysts. We assessed the photosynthesis and nitrogen-fixing capacities of heterocysts and vegetative cells, respectively, at the transcriptome level. RNA extracted from nitrogen-replete vegetative cells (NVs), nitrogen-deprived vegetative cells (NDVs), and nitrogen-deprived heterocysts (NDHs) in Anabaena sp. strain PCC 7120 was evaluated by transcriptome sequencing. Paired comparisons of NVs vs. NDHs, NVs vs. NDVs, and NDVs vs. NDHs revealed 2,044 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs showed that carbon fixation in photosynthetic organisms and several nitrogen metabolism-related pathways were significantly enriched. Synthesis of Gvp (Gas vesicle synthesis protein gene) in NVs was blocked by nitrogen deprivation, which may cause Anabaena cells to sink and promote nitrogen fixation under anaerobic conditions; in contrast, heterocysts may perform photosynthesis under nitrogen deprivation conditions, whereas the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Immunofluorescence analysis of nitrogenase iron protein suggested that the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Our findings provide insight into the molecular mechanisms underlying nitrogen fixation and photosynthesis in vegetative cells and heterocysts at the transcriptome level. This study provides a foundation for further functional verification of heterocyst growth, differentiation, and water bloom control.


Asunto(s)
Anabaena/citología , Anabaena/genética , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno , Anabaena/metabolismo , Anabaena/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Nitrógeno/metabolismo , Transcriptoma
4.
Appl Microbiol Biotechnol ; 104(6): 2545-2559, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31989219

RESUMEN

ß-Alanine is a naturally occurring ß-amino acid that has been widely applied in the life and health field. Although microbial fermentation is a promising method for industrial production of ß-alanine, an efficient microbial cell factory is still lacking. In this study, a new metabolically engineered Escherichia coli strain for ß-alanine production was developed through a series of introduction, deletion, and overexpression of genes involved in its biosynthesis pathway. First, the L-aspartate a-decarboxylase gene, BtADC, from Bacillus tequilensis, with higher catalytic activity to produce ß-alanine from aspartate, was constitutively expressed in E. coli, leading to an increased production of ß-alanine up to 2.76 g/L. Second, three native aspartate kinase genes, akI, akII, and akIII, were knocked out to promote the production of ß-alanine to a higher concentration of 4.43 g/L by preventing from bypass loss of aspartate. To increase the amount of aspartate, the native AspC gene was replaced with PaeAspDH, a L-aspartate dehydrogenase gene from Pseudomonas aeruginosa, accompanied with the overexpression of the native AspA gene, to further improve the production level of ß-alanine to 9.27 g/L. Last, increased biosynthesis of oxaloacetic acid (OAA) was achieved by a combination of overexpression of the native PPC, introduction of CgPC, a pyruvate decarboxylase from Corynebacterium glutamicum, and deletion of ldhA, pflB, pta, and adhE in E. coli, to further enhance the production of ß-alanine. Finally, the engineered E. coli strain produced 43.12 g/L ß-alanine in fed-batch fermentation. Our study will lay a solid foundation for the promising application of ß-alanine in the life and health field. KEY POINTS: • Overexpression of BtADC resulted in substantial accumulation of ß-alanine. • The native AspC was replaced with PaeAspDH to catalyze the transamination of OAA. • Deletion of gluDH prevented from losing carbon flux in TCA recycle. • A 43.12-g/L ß-alanine production in fed-batch fermentation was achieved. Graphical abstract.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , beta-Alanina/biosíntesis , Bacillus/enzimología , Bacillus/genética , Proteínas Bacterianas/genética , Técnicas de Cultivo Celular por Lotes , Vías Biosintéticas , Fermentación , Ácido Oxaloacético/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
5.
Plant Physiol Biochem ; 141: 446-455, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31247427

RESUMEN

Coumarin plays a pivotal role in plant response to biotic stress, as well as in the mediation of nutrient acquisition. However, its functions in response to abiotic stresses are largely unknown. In this work, a homologous gene, GmF6'H1, of AtF6'H1, which encodes the enzyme catalyzing the final rate-limiting step in the biosynthesis pathway of coumarin, was isolated from soybean. GmF6'H1 protein shares very high amino acid identity with AtF6'H1, and expression of GmF6'H1 in atf6'h1 can successfully restore the decreased coumarin production in the T-DNA insertion mutant. Further study revealed that the expression of GmF6'H1 in soybean was remarkably induced by salt stress. Constitutive expression of GmF6'H1 in Arabidopsis, driven by 35S promoter, significantly enhanced the resistance to salt of transgenic Arabidopsis. All these results suggest that GmF6'H1 can be used as a potential candidate gene for the engineering of plants with improved resistance to both biotic and abiotic stresses.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Glycine max/enzimología , Tolerancia a la Sal , Arabidopsis/genética , Clorofila/química , Clonación Molecular , Cumarinas/química , Perfilación de la Expresión Génica , Germinación , Fenotipo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas , Glycine max/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...